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The reversibility of the strain of ideally elastic bodies results in the requirement for the 
existence of a specific strain energy, a function of the strain components, which com- 

pletely characterizes the mechanical properties of the body material. The stresses are 

connected to this function by the equality 

crij = aC@Q 

i. e. will be its gradient in six~dimensional strain space. 

(‘3.2) 

An increase in the work expended in strain during the change in strain components 
towards a withdrawal from the natural (unstressed) state of the body is characteristic for 

real elastic bodies. This property can be called the stability of the material. It makes 

growth of the strain of solids impossible without an increase in loading on them. Atten- 
tion was first turned to this property in plasticity theory, where it was formulated by 
Drucker @_I as one of the fundamental postulates’ of this theory. Subsequently, the same 

author r2] noted that this postulate is not specific for plasticity theory, but is a more 
general statement which should be considered valid for any solid. 

For ideally elastic materials the stability requirement is expressed as a requirement 
for convexity of the stress potential in the six-dimensional strain space tI$j. This latter 
results from the fact that the expression of the Drucker postulate for elastic materials 

Equality is possible either in the trivial case of no additional loading or the case of 
an incompressible elastic material when hydrostatic pressure will be the additional load- 
ing. It is hence seen that the quadratic form (0.2) should be sign-definite. The termi- 

nology “real elastic body”, which is used above, requires some clarification. The beha- 
vior of low-molecular solids, particularly metals, is elastic only for small deformations. 
On the other hand, there exists a class of materials whose behavior corresponds most 

completely to a theoretical model of an ideally elastic body. These are high-molecular 
compounds, which behave analogously to incompressible elastic bodies in a highly-elastic 

state, as numerous tests have shown [3], where the deformation can reach quite large 
values. 

As usual, we take the potential in the form 

CD = Q, (Zt, I,, 13) (6.3) 

where for polymers it is sufficient to consider CD a function of the invariants Z2 and Z3 

of the strain tensor. The questfon of the constraints imposed by the condition (0.2) on 
the potential and its derivatives is considered herein, and the meaning of these constraints 
is explained. 

1. Conttrrint8 on rha elrrtic potential and elrrtlc mrtsrirl 
chorrcterirticr retultfng from ths ttrbilfty poctulrte (0.2). Let 
us introduce the following relationships : 

6’7 
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il = Eii6,iy I, z ‘12 EiiEij - ‘10 112 

13 = - Eg&&ji $- 21112 7’ l/g 113 
Eii = ;i ),, i=i 

i 2 1 13 i+j 

(1.1) 

dI, j dlCij = 8ij, aI, / dEij = Eij - l/3 1,6ij 

8131 a&ij = - sEi@kj -i 211 (&ii - l/3 Il6ij) f (zl, + ‘13 Il’)dij (1.2) 

Here qii are the strain components. Taking account of (1.2). we obtain from (0.2) 

(1.3) 

Let us select a frame of reference such that the coordinate axes would coincide with 
the principal axes of the tensor .Q. Then by virtue of (1.2) the differentials dIk contain 

only dell, de%, and dE33r and the quadratic form will consist only of terms with paired 
products of these differentials, and with squares of &+. Let Arr, d ss, . . . . Ass denote 

the coefficients of (&11)2, (dess)s, . . ., (d&,3)2 , and 2A1s, 2A,, and 2A2, of 

dEll~221 dE,,dE 33 and & 22&33 , respectively. 

The form (1.3) divides into two: one in the variables c&, de,,, do,, and the other 

in the variables de,,, okI and dcz3. In conformity with this and the condition of posi- 
tive definiteness of the forms (1.3) 

detI/&Jl>O (I, m = 1, 2, 3) (1.4) 

Da = Aad > 0: A44 > 0; D, = A,,A44D3 > 0, A,, > 0 

DB = A6GAs5A44D3 > 0, &6>O (1.3) 

decompose into the positive definiteness condition for each of the forms separately. 
Namely, (1.4) refers to the former, and (1. 5) to the latter. This makes possible a sepa- 
rate analysis of each quadratic form. The additional stress daij causes two mutually 
independent classes of changes c&j of the tensor Eij: a change in the invariants is the 
first form, and rotation of the principal axes is the second. Hence, the singularity in the 

quadratic form (1.3) noted above indeed becomes conceivable. 
Let us examine the first form. Let us introduce the following in place of conditions 

(1.4): 
(1) A,, +A22 +A33 > 0 

(2) A,,A22 + A,,A33 + -422A33 - A$ - A132 - -4232 > 0 (1.6) 

(3) detll Akl Ii> ’ (k, 1 = 1, 2, 3) 

It can be shown that these conditions are equivalent to (1.4). To do this it is sufficient 
to reduce the symmetric matrix of the coefficients of the quadratic form to diagonal 

form with some elements BII, B,,, B,,. Then conditions (1.4) are equivalent to the 
positivity of these elements, and conditions (1.6) become correspondingly 

BII + B,, + B,,.> 6, B,I B,, -t B,&, + Bd33 > 0, BdW33 > 0 
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It follows from the first condition that at least one element, err say, should be positive, 

and it is clear from this latter that only two (23,s and Bss) can be negative elements. 
let us rewrite the second condition as 

B - B,, (Bn + “/d%,) + B,, (BII + ‘i&d 

The quantities in parentheses are positive, hence, the whole expression is negative. 
Therefore, the assumption on the negativity of B, and El, is incorrect, and (1.4) and 
(1.6) turn out to be equivalent. 

For the frame of reference taken a,, = rjr, es2 = q2, e33 = vs,where theqr are 
the principal strains connected to the invariants 1, by means of the relationships 

rll = 3/3fFV~~* sin (‘p + Vsn) + f/s1r, q2 = ‘/a~~f2~* sin g, + ‘13 11 

q 3 = a!$ f3t, f ** sin (‘p + */sn) + r/s Ii, cp = l/s arc sin (‘1s l/-Is I I:‘*) 

-Vsn < cp < r/sn (4.7) 

Utilizing (1.1). (1.2) to evaluate the coefficients A,j (i, i = 1, 2, 3), we obtain 
from (1.6) (1.8) 

3tB-D / a.l,s + Yl > 0, Ypcf, I dr,2 + Y’z > Yy,, Y,&D I ar,* > Y4 

The equality in the last of the relationships (1.8) refers to the case of an incompres- 
sible material. In (1.8) 

let us introduce the following generalized elastic moduli according to [4] 

They are connected to the potential CD by means of the relationship 

act0 / aI, = KI,, aa, I dI, = 2G cos co, d@//aq = 4G1,sino 

Here 

Q = a&ij* Jz = ‘/aG<jbij - ‘/*Q’s Js = - ai#kjaji + 2aJ, f ‘/*a3 

9 = ‘Is arc sin (‘la f&T8 / J2”‘), - ‘/as < * < vaa (1.11) 
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The potential @ in (1.9) is considered a function of the invariants f,, 1, and I,, 
and in (2.11) of the invariants I,, I, and rp. Correspondingly d@ i 81s has a different 

meaning in these relations. 

It follows from the equality of the derivatives d2(D / dl,dq and d2Cf, / @X?l, that 

cos o dG / dY - G sin o ao I dy = 2G sin o -+ 

+ 21, (sin w dG / dI, + G cos o &o / dl,) (1.12) 

Taking account of the remark relative to (3(f, / dr2 and utilizing (1.7), (1.11) and 

(1.12) to evaluate the derivatives in (l.9)l we obtain 

(1.13) 

The function Ys vanishes either on the deviator axes Q = s’lz = 113, when f, = 0, 
or for dG / d1, = dw i 81, = 0. It can be shown that no other cases can vanish. 

The expression in parentheses for Y, is a quadratic form in the quantities 8G / 6’1, 

and do / aIt. bet L, 2ikf and N denote the coefficients of (aG I arJ2, (dG / aI*) 
(&II / arl) and (&I / a1,)2,respectively. only for M2 - LN 2 0 can the function 
Y, vanish. It is easy to show that Ma - LN = - 3/4Yz. If the discriminant is zero, 

Ya = 0, and the last inequality in (1.8) is violated. The equali,ty can hold here only 
for an incompressible material. If &f2 - LN > 0, then Yz < 0, hence for compli- 

ance with the last inequality in (1.8) it is necessary that d2@ / dJ1a ( 0, and for 
compliance with the second it is required that Yt ( 0, whereupon the first is violated. 
Other cases of Y., equalling zero (L =IT &i = N==O; L==M=O, ~G,iUl=-O. 
etc.) reduce to those considered above. 

Since Ye is a sign-definite quadratic form, L and N should be of the same sign, and 
LN - M2 > 0, i.e. Y, >:. 0. Hence, the sign-definiteness of Y, follows at once. 

For example if Y, = il, we obtain from the first and second relationships in (1.13) 

2&G% = g, 21sdG,ldli,l.G= -Gji)o/&p’- 1) 

\~p, I- - 4/Q [(&,I / &p -t_ 1)a + 41z2 (c%o / dl?)‘] < 0 

In the two cases noted above of Yh equalling zero (and Ya , correspondingly), we 

arrive at the same deductions relative to Ytand Ya. For example, from the last inequa- 
lity in (1.8) it follows at once that a2@ / d1,” and Y, should be of the same sign, 

positive, more exactly, since otherwise either the second inequality (1. 8) is violated ii 
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Yr > 0, or the first, if Yx < 0,or both inequalities if Yl = 0. There remains to 
determine the signsof Y,and YL To do this it is first necessary to explain a number of 

properties of the function 61 and G. We obtain from (1.11) 

In combination with (1,3.4), these relationships permit making the following deductions 
relative to 0 : 

1) For 1, = 0 the quantity o = 0 since dcf, / 8, =f= 0 because of the continu- 
ity of u ,simultaneous disap~aran~~ of Iis I2 -r rY@ I drp and SD / ~%‘a is exclnded 

becauseG> 0; 

2) The sign of w is determined by the sign of d@ / &p. This follows from (1, 11) 
and G > 0; 

3) The quantity 0 is a single-valued and bounded function of the invariants, as is 

seen from (1.10) and the first of relations (1.14). 

Analyzing (1.14) and (1.15) jointly, we find that for 1s = 0 

am j drp = aG I dp, = I&o I 41, = 0 
By virtue of ys ) 0 the positivity of 21,X2 / 81s + G follows hence and from(Z ,I 3) 

the positivity of y1 and the coefficient L%’ for is = 0. correspondingly. By virtne 

of their sign~onstancy the quanti~es~~ and Y4 should remain positive in the whole 
stability domain, and the same deduction relative to 8%) / 8rza follows from the last 
relation in (1.Q Thus, the relations (I, 8) are equivalent to the following; 

Pa, / arts > 0, Yt>O, ys>o, y4>0 

YpD / aq + Yz > Y,, yt,cP@ I aq > Ya (f.26) 

The last two inequalities in (1.16) indicate that the dependences of the functions G 
and w on the variable Jr are determined by how these same functions depend on 12 and 

Q, and cannot be arbitrary. 

The sign of (% / dpr) (8~0 / d&) in the expression for Ysin (1.13) plays an essential 
part in the subsequent analysis of the constraints (X,16), If this quantity is nonnegative, 
then it follows at once from the second and third relation in (I.. X6) and the first two in 
(1.13) that 2f, x I dr, f G > 0, B#/dqf fl)O 

(21, dG f r31, + G) (do I 89 f f) > 21, (8G I &p) (&a / NJ >O (1.17) 
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Appending the first inequality in (1.16) to these latter and utilizing (1. lo), we obtain 

It is seen from the second inequality in (1.18) that the dependences J,1/2 on $ and 

Cp on 1, should be completely definite, which is connected with the fact that Jz depends 
on 1s and I# on q. The remaining inequalities in (1.18) require that u, J,!Ig and $ be 
increasing in the appropriate variables. 

Let us clarify under which conditions the quantity (dG f L$) (aw I Ha) is nonnega- 

tive. bet us first note that when the signs of o and &o / al* agree, compliance with 
the condition u;f‘r > 0 is possible if and only if the signs of dG / i$ and So I Al,. 

agree. 
For w as a single-valued.continuous and bounded function of the variables f, and ‘p 

there will be increasing and decreasing sections in the variable 1%. Let o > U (analog- 
ous reasoning will yield the same result for the case o < 0). The signs of w and do / 
/ 81, will agree on the growth section, and then dG / &p will have the same sign. At 

the extremum points dw / 81, = 0. On the decreasing section 0 and &c / a& have 

different signs, and the sign of BG J a’p may not agree with the sign of ao / dI,.This 
means that a$ / 0cp or $J,“: I’ a&‘!z can reverse sign. 

Because 9 = arctg i/sr/zp and v = 63 tg rp, the sign of &Jr i a’p is determined 
by the sign of &, / av. If it is assumed that p, = l& (Ia, Y) forms a family of smooth 

curves on the ELZ, plane, which intersect only at the points v = 0, -L 1 (as occurs in 

experiments), then the greatest deviation of 6p J 8~) from unity in absolute value will 

be at these points. A sign reversal of a~,Gv is possible at these points only when the 
deviation of the curve from the line p = v increases, i. e, as \ w 1 increases, while 

the reverse occurs on the decreasing section. Therefore, a change in the sign of a+/@ 
is not possible for such curves. As regards the tangential modulus aJs’/z / dI,’ ?, it is 

known from experimental results that it is always positive. Thus, the inequalities(l.l$) 
will be exact consequences of the first three inequalities in (1.16) either when the signs 
of o and ao / 81s agree, or for those smooth curves lr = p (I,, v) which intersect 

only at the points v = 0, ;k ‘l in the PY plane. 

For an incompressible material a’@ / aItz = Y, = u”, = 0 only the second and 

third conditions of (1.16) remain, and our whole discussion remains valid. 
Let us consider the cons~ain~ connected with the second quadratic form. Using (1.1). 

(1.2) we find the coefficients AQP, A 6s and Ass and write conditions (1.5) as 

If (1.7) is taken into account. and dQ> / aI, and 84, / a&, are evaluated while 
recalling that the derivatives a@ / a1, have different meanings in (1.11) and (1.29). 
we obtain from (1.19) 
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coso-sine 
sin3q-2sinq 

co9 3q >o 

(1.20) 

Ascribing different values to v it is easy to find the domain of variation of o by 

means of these inequalities. It is defined by two lines on the ocp plane 

-1lsn - cp -Co <‘&n-- (1.21) 

The relationships (1.16) and (1.19) represent a complete system of constraints imposed 
by the stability condition on the elastic potential and its derivatives. 

In concluding this section,let us examine application of stability condition in two 

simple examples. The potential for a Hooke body is 

CD = V~K”I~2 + 2G012, K” = E / 3(1 - 24, G=El2(i+v) 

(v is the Poisson ratio). 
From the stability condition it follows that K” > 0, G” > 0, which is equivalent to 

the constraint 
-1 <v <‘I2 (1.22) 

In our invariant& the potential for a Murnaghan body [S] is 

@ = const - pJ1 + l/e (31 + [2p)Zi”-+ 2pZ2 + 1/27(9Z + n)Z’l + 

+ l/s (6m - n) ZJ, - 1/3n13 (1.23) 

where p,, is hydrostatic pressure, h, p Lame coefficients, 1, m, n elastic constants. 
To be more graphic, we can put 6m = n in (1.23). Subjecting such a potential to the 

conditions (1.16) and (1.19), we obtain 

3(h-~2~)+211(9l+n)>O, P > 6, 3pLa - n212 > 0 (1.24) 

2p - (q1 - 'l3Ilb > 0, 2P - (7-1~ - 1/31dn > 0, 2/l - (q3 - 'lsZ1)n > 0 

The limit value I1 is determined from the first inequality, and I, from the last four. 
We can consider I, and Ia as given, and to seek constraints on 1, m, n. For example, 
combining the first and second inequalities for small Z1,we obtain constraints on Y which 

agree with (1.22). If (1.7) is taken into account in (1.24), it is seen that compliance 
with the third assures compliance with the last three inequalities in (1.24). We hence 

obtain 

(1.25) 

Knowing the limits of variation of n, p, h the limits in the variation of the last con- 

stant 2 is easily found from the first relationship in (1.24). 

2, On the role of the nonlinear tensor term: in the rolrtion- 
n hip ( 0, 1). As is known, the specific gravity of the nonlinear tensor terms in the 
stress-strain relations is determined by the quantity o. We seek the range of variation 
of o from the last stability condition in (1.18). According to [5], the following relation- 
ship between the Lode parameters lr and Y is valid: 
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pzy 
6 (3 + vy - 0 (9 -- Y’) (3 - Y ) 

6 (3 + v;jz - zov (9 ‘.- Y ) (2.4) 

Here 8 is some function of 1, and Y which characterizes the deviation of the curve 
/l, = lt (I,, V) from the straight line /J = V. It is seen from (2.1) that the curves 
l_t = l_t (0, v) in the l.tv plane absolutely pass through the origin of the points (1.1) 

and (-1. -l), which correspond to the origin and the points (‘/s?t, ‘/en) and (-i/s zt, 
-r/sn) on the $rp plane. From here and from the last inequality in (1.18) it follows 
at once that the curves 2c, = 9 (I,, 9) should be found in the first and third quadrants 

and 1 m [ < “/Qc. 
The range of variation 8 equals (-3, 16/J in 153. Let us note that for some values 

of 8 from this range p and Y ( +and cp, respectively) would have different signs, which 
is not possible for a stable material. 

For example, if v = 0.1, it is sufficient to take 0 > 2.05, and p, will be negative. 
The fourth condition in (1.18) is equivalent to positivity of the derivative @ / 6%. 

Determination of the range of variation of 8 from (2.1) by using the last condition turns 

out to be possible only under the assumption of independence of 8 from Y. Hence, (2.1) 
generates a one-parameter family of smooth curves on the l.tv plane, which intersects 

only at the origin and at the points (1, 1). (-1, -1). The meaning of the assumption 

considered earlier in analyzing the stability condition now becomes understandable. 

We find dp f i)v from (2. I). We equate the numerator of the expression obtained to 

zero 

29 (-4” + $54 - 27x.72 - 243&F + 6 (Y" + 3) (v" - 99v4 $ 243v2- 

-Sl)8 + 36 (v" + 3)4 = 0 (2*2) 

Assigning a number of values to Y, we find the roots 6,and 8, in the form of two 
curves ; the domain between them will be the stability domain for different v. 

Let us present several such points 

Y --* 0, Y = k 0.32, v = & 0.63, Y = + 0.89, v = + 1.00 -- _- 

0, ---* _ m, 8, = _ 24.50, @I = - 4.94, eI = - 3.01, e1 = - 3.00 

8, - 2, 8, = 2.70, 0, = 4.94, Efz = 5.99, 0, = 6.00 

From these data the required interval is defined as 

-3<8<2 (2.3) 

Presented in Fig. 1 are curves of (&and es, and the curves l.r, = lt (v) for 8 = 2, 
fJ = - 3 in Fig. 2. It is seen that the ultimate state for the first curve sets in for 
v = + 0, and for Y = 1 - 0 for the second. The followinf range in w 

lo] (13" (2.4) 
corresponds to the range (2.3). 

We reconstruct the curves lr = lo (v) for $ =5 2 and 8 = - 3 into 0 = or (cp) 
curves in the og, plane. We superpose the straight lines o = ‘fsx - tp and 0 = 
=- ‘/en - cp on the curves obtained (Fig. 3). It is seen that the straight lines lie 



on properties ot the stress potential ot elastic bodies 

above and below the curves, hence the range of variation of o is defined entirely by 
these two curves. This means that compliance with (1.16) implies compliance with 

6 

Fig. 1 Fig. 2 Fig. 3 
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(1.19) for a simultaneous change in the invariants and a rotation of the principal axes 

of the tensor eii , while the reverse is incorrect. Hence, conservation of (1.16) is neces- 

sary and sufficient for a material to be stable. 

The author is grateful to A. A. Vakulenko for critical remarks made during discussing 
the research. 
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